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INTERACTION BETWEEN CRACKS POSITIONED
AT AN ANGLE

1. D, Suzdal'nitskii . UDC 539,013

The interaction between cracks in an elastic plane weakened by a system of cracks has, as a rule, been
investigated in the case of collinear cracks only. More complex configurations were analyzed in {1, 2}, in the
first of which four slits placed symmetrically about their common center were studied by using Fourier frans-
forms; in the other, a periodic system of lengthwise—crosswise cracks was studied, In [3] singular integral
eguations were produced for a system of arbitrarily oriented cracks; numerical results were obtained only
for collinear cracks oriented at the same angle to loading direction. In the case of brittle failure the investi-
gation of the interaction between two arbitrarily directed cracks is of interest, this being the subject of the
present article.

Let there be two cuts Ly and L, in the xOy plane (Fig. 1) whose parametric equations are (k= 1,2).

Ly: z(t) = apt, y(t) = bal, 0T b SIS gy
(ap = cos o, by = sin ay).

The boundaries of the cuts are assumed to be stress~free, and at infinity the applied forces are
6F =0y, O =0, Tg=0 1)
The following representation [2] of the stress function U is employed:

2 Ip2
U@, 4) = + (0 + 0,27 + 2 = E (1 @) + (B rad In (5 + 13.) dt, (2)

t
where
I = QT + bpy — t; rop = —bpx + @Y.
The function (2) must satisfy the conditions (1). The éonditions on the boundaries of the cracks L, are
{0y + 6;) + (0y—0,) cos 2a;, — 2t,ysin 2a;, = 0,
(o, —0o,) sin 20, 4 21, cos 2a;= 0,

where
= 0?U/oy% oy = 02U /02%; 1.y =—0*U/0xdy,
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and hence there follows a system of four singular integral equations for the functions f,(t) and fy(t), In the
case of symmetrically positioned slits (¢; =, oy =7 — @) which are also of equal length 7 =1 =X (0 < A<1),
one obtains the equation (k=1, 2),

(L8 1 1 ® Ru 0+ 10 Bu (6. 9) | 5 = — s, 3)

1
- R

ra

where
Ry = (cx — E)(1 + 25°%ED)D;
Ry, = sz|2(cx ~ ENz — E)D — 11D;
Ry = szl(z — cB)* — (sE)*ID%

Ryy = ci—;g Ry
D = (2% — 2¢c2k + EH-1; ¢ = —cos 2a, s = sin 2q;

_py = 0.5l(0y + 05) + (0, — 0y) cos 2al; p, = 0.5(0,— 0,) sin 2a.—'l

The transformation

E= (1N + &) + (& —E) o), £ =(U2)(E: + &) + (& — Eu)
takes Eqs, (3) to the symmetrical interval (—1, 1), Following [4] one sets

og) (v)
fr(8) = gr (v) = —E=—=-. 4)
Vi1i—a2
The functions glo{(v) are found in the form of the interpolatory trigonometric polynomial,
N
1 j .
g (V) =+ 2 (= 1)""'gsind; Eo—scﬁ—os_‘jr—;}g? (5)
=t
' 2 =1
v=cosd, O;=L—n.

The problem has thus been reduced to a system of linear algebraic equations for the coefficients Ekie
This system must be augmented by a condition that the displacements remain single-valued when travelling

a—

N
around the crack ( fx (§) d& = 0,which by virtue of (5) becomes ¥ g,,=0 k=1, 2).
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The stress-intensity coefficients are now determined at both ends of the slits. One has

2 tht2
2 :
op oy =4hRe® () =0+ 0,4+ X 5 | hOrm+ fo(Oral 7=,
h=1 T Th

'k
and hence one obtains for the Kolosov— Muskhelishvili function the representation
2 a2

@(z)z‘%"_z__;_gl% 5 fe™de o o 4 i, (6)

t - el
One employs the expansions (4) and (5) and one sets
p= 24 iy = e (G + 8 + G — E) T
having evaluated the integral in (6), one obtains

A'
1 ; L . N
@) = 5 X (— 1) (6 + iga) sint e ("I°_°°:o§’ﬁj) +R(2), )
j= ®

where R(z) is a regular function at the ends.

The extension coefficients in (7) are complex valued, 81j +igyj. Therefore, in the case of the extension
of a plane with cracks positioned at an angle one has to take into account the intensity coefficients not only of
the normal forces K;=0p ., but also of the tangential forces K, =0p,. To evaluate these coefficients the limits

2 lim V2a|MM ,[@(2) are evaluated, where at the near ends one has MM;=(A = t)ela (t <A) and at the other
MMy,

ends one has MyM =(t — l)ela {t >1). The expressions for the intensity coefficients at the near ends are

.
=i ‘ 8,
pro = VT“T;(_ 17*gy, ctg o (®)

The value of P17 can be obtained from (8) by replacing g1j by 82j- For the far ends in the formula (8) one
must replace cot(«}j/ 2) by—tan(&j 2), the corresponding expressions now denoted by py;;» Por.

In Figs. 2 and 3 the graphs of the intensity coefficients py7, gy are shown in the case of lengthwise ex-
tension (0, =0); in Figs, 4 and 5 the graphs of a crosswise extension pyg, Py (04 =0) are shown as dependent on
the slope angle of the slits to the horizontal axis, the value of A being 0.2, 0.4, 0.6, and 0.8 (curves 1-4, respec-
tively). The solid lines show the intensity coefficients for the far ends and the dashed lines, for the near ends.

One has retained 21 terms in the calculations when solving the algebraic systems for kje If one retains
31 terms in the calculations the results remain the same with an error not greater than 1074,

The intensity coefficients of the tangential forces attain their highest values for the angle between the
direction of the cracks and that of the load action equal to 45°, By comparing the values of the intensity co-
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efficients of the tangential stresses with those of normal stresses one observes that for lengthwise extension
depending on the values of A one has the inequality p; < pr for angles less than 40—45°, Similar effect is ob-
served for extensions in the crosswise direction though now for angles > 40-45°, For ¢ = 0 the computational
results agree with the known results [5].

The author would like to express his gratitude to L., M, Kurshin for his unceasing interest in this work
and to A, M, Kaganskii for carrying out the computations,
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DETERMINATION OF THE RATE OF EVOLUTION OF ELASTIC
ENERGY FOR A T-SHAPED CRACK BY THE METHOD OF
MEASUREMENT OF THE PLIABILITY

L. P, Frantsuzova UDC 539.375

At the present time, the values of the stress-intensity coefficients and the rate of evolution of elastic
energy are well known for various configurations of a body with rectilinear cracks [1]. For a nonrectilinear
crack, the only known problem is that of an arc-shaped crack in an infinite sheet with homogeneous elongation
in an arbitrary direction {2]. .

To clarify the character of the propagation of cracks in laminar materials, it is important to know the
rate of evolution of elastic energy for I'-shaped cracks, where, after the breakdown of an element of the ma~
trix,peeling-off starts in the composite material. The theoretical solution of such a problem is rather com-
plex and, up to the present time, has not been carried through. In the present article, this problem is solved
experimentally by the method of measurement of the pliability,

A method for determining the rate of evolution of elastic energy from the change in the pliability with an
increase in the length of the crack was proposed a long while ago [3]; however, we know of no work where the
method has been implemented in practice. This is obviously connected with the necessity of making extremely
exact measurements, which is difficult to do practically. In the present work, the method of measuring the
frequency of the intrinsic vibrations was used, which makes it possible to measure the pliability of a sample
with an accuracy up to 0.05%.

Novosibirsk, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 3, pp. 146-150,
May-June, 1977, Original article submitted July 5, 1976,

This material is protected by copyright registered in the name of Plenym Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

397



